نظریه نقطه ثابت برای توابع انقباضی مجموعه-مقدار
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی
- author سمیه موحدی زاده
- adviser شیرین حجازیان تکتم آقاسی زاده
- Number of pages: First 15 pages
- publication year 1389
abstract
نظریه نقطه ثابت برای انقباض های مجموعه – مقدار توسط نادلر آغاز شد. این نظریه سپس توسط ریاضی دانان بسیاری بسط و گسترش یافت. در این پایان نامه مفهوم انقباض های مجموعه – مقدار در فضاهای متریک معرفی می شود و به بررسی شرایطی می پردازیم که لزوم وجود یک نقطه ثابت را برای چنین نگاشت هایی تضمین می کند.
similar resources
قضایای نقطه ثابت برای توابع مجموعه مقدار
هدف اصلی این رساله بیان و اثبات تعمیم هایی از قضیه نقطه ثابت باناخ برای توابع و توابع مجموعه مقدار است. کاربرد هایی از این قضایا در اثبات وجود و منحصر به فردی جواب معادلات دیفرانسیل، معادلات انتگرال و معادلات ماتریسی آورده شده است. همچنین نسخه ای از اصل انقباض باناخ در مجموعه های متعامد ثابت شده است.
15 صفحه اولمسائل نقطه ثابت برای خانواده توابع مجموعه مقدار و کاربرد آنها در مسائل بردار تعادل
این پایان نامه مشتمل بر سه فصل است که در فصل اول به معرفی مفاهیم مورد نیاز از جمله نگاشت های kkm (kenastere-kuratowski-mazurkiewicz) و نگاشت های kkm تعمیم یافته که ابزاری برای حل مسائل تعادل هستند پرداخته ایم . در فصل دوم قضایای نقطه ثابت را برای توابع مجموعه مقدار در فضاهای فاقد ساختار جبری ( g-convex ) با استفاده از قضایای فصل اول مورد مطالعه قرار داده ایم . و بالاخره در فصل سوم مسئله تعادل ب...
15 صفحه اولقضایای نقطه ثابت روی توابع مجموعه ای
در این پایان نامه شرایط خاص برای وجود نقطه ثابت مشترک برای توابع مجموعه مقدار f و g روی فضاهای متریک مرتب کامل (x,<=,d) می پردازیم. همپنین یک اثبات ساده از قضیه نقطه ثابت ندلر و قضیه نقطه ثابت باناخ ارائه می دهیم و با در نظر گرفتن شرایطی به وجود و یکتایی نقطه ثابت در توابع مجموعه ای مقدار می پردازیم.
15 صفحه اولقضایای نقطه ثابت مشترک برای توابع انباضی ضعیف توسعه یافته تحت شرط ضعیف میر-کیلر توابع
در این مقاله به اثبات قضایای نقطه ثابت برای توابع مجموعه ای مقدار می پردازیم و بعضی از شرایط ضعیف انقباضی را توسیع می دهیم. نتایج ما نتایج چنگ-چن و چریچ را توسیع می دهد. در انتها با یک مثال توسیع بودن نتایج را نشان می دهیم.
full textقضایای نقطه ثابت و نقطه انتهایی برای نگاشت های مجموعه مقدار
در این پایانامه، ابتدا قضیه نقطه ثابت لفشتز را روی دو کلاس متفاوت از نگاشت های مجموعه مقدار غیرفشرده گسترش می دهیم که روی یک زیرمجموعه ی فضای باناخ که یک اجتماع موضعاً متناهی از مجموعه های بسته و محدب است تعریف شده اند. همچنین، یک جواب جزئی به حدس ناسبام برای نگاشت های مجموعه مقدار می دهیم. در ادامه از دیدگاه توپولوژیکی، وجود و یکتایی نقطه انتهایی را برای نگاشت های مجموعه مقدار به طور توپولوژیکی...
15 صفحه اولنظریه نقطه ثابت روی توابع از یک زیر مجموعه فضای هیلبرت به خودش
فضاهای برداری توپولوژیکی موضعاً محدب بر یک شبه میدان توپولوژیکی نرم پذیرند . با استفاده از این نرم عملگرهای باناخ وتوابع انبساط ناپذیر تعریف می شوند و چند قضیه نقطه ثابت اثبات می گردند . همچنین برای فضاهای اکیداً محدب نشان داده می شود که تحت شرطهای مناسب مجموعه ی نقاط ثابت یک تابع انبساط ناپذیر یک تو کشیده ی انبساط ناپذیر است.
15 صفحه اولMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023